
Unit-3

Open Source Database: MySQL- Introduction - setting up account-starting, terminating and

writing your own SQL programs, record selection technology, working with strings - date and

time, sorting query results.

MySQL- Introduction

MySQL Database

MySQL is a fast, easy-to-use RDBMS being used for many small and big businesses. MySQL

is developed, marketed and supported by MySQL AB, which is a Swedish company. MySQL is

becoming so popular because of many good reasons −

 MySQL is released under an open-source license. So you have nothing to pay to use it.

 MySQL is a very powerful program in its own right. It handles a large subset of the

functionality of the most expensive and powerful database packages.

 MySQL uses a standard form of the well-known SQL data language.

 MySQL works on many operating systems and with many languages including PHP,

PERL, C, C++, JAVA, etc.

 MySQL works very quickly and works well even with large data sets.

 MySQL is very friendly to PHP, the most appreciated language for web development.

 MySQL supports large databases, up to 50 million rows or more in a table. The default file

size limit for a table is 4GB, but you can increase this (if your operating system can

handle it) to a theoretical limit of 8 million terabytes (TB).

 MySQL is customizable. The open-source GPL license allows programmers to modify the

MySQL software to fit their own specific environments.

Installing MySQL on Linux/UNIX

The recommended way to install MySQL on a Linux system is via RPM. MySQL AB makes

the following RPMs available for download on its website −

 MySQL − The MySQL database server manages the databases and tables, controls user

access and processes the SQL queries.

 MySQL-client − MySQL client programs, which make it possible to connect to and

interact with the server.

 MySQL-devel − Libraries and header files that come in handy when compiling other

programs that use MySQL.

 MySQL-shared − Shared libraries for the MySQL client.

 MySQL-bench − Benchmark and performance testing tools for the MySQL database

server.

The MySQL RPMs listed here are all built on a SuSE Linux system, but they will usually work

on other Linux variants with no difficulty.

Now, you will need to adhere to the steps given below, to proceed with the installation −

 Login to the system using the root user.

 Switch to the directory containing the RPMs.

 Install the MySQL database server by executing the following command. Remember to

replace the filename in italics with the file name of your RPM.

The above command takes care of installing the MySQL server, creating a user of MySQL,

creating necessary configuration and starting the MySQL server automatically.

You can find all the MySQL related binaries in /usr/bin and /usr/sbin. All the tables and

databases will be created in the /var/lib/mysql directory.

The following code box has an optional but recommended step to install the remaining RPMs in

the same manner −

[root@host]# rpm -i MySQL-client-5.0.9-0.i386.rpm

[root@host]# rpm -i MySQL-devel-5.0.9-0.i386.rpm

[root@host]# rpm -i MySQL-shared-5.0.9-0.i386.rpm

[root@host]# rpm -i MySQL-bench-5.0.9-0.i386.rpm

Installing MySQL on Windows

The default installation on any version of Windows is now much easier than it used to be, as

MySQL now comes neatly packaged with an installer. Simply download the installer package,

unzip it anywhere and run the setup.exe file.

The default installer setup.exe will walk you through the trivial process and by default will

install everything under C:\mysql.

Test the server by firing it up from the command prompt the first time. Go to the location of

the mysqld server which is probably C:\mysql\bin, and type −

mysqld.exe --console

If all went well, you will see some messages about startup and InnoDB. If not, you may have a

permissions issue. Make sure that the directory that holds your data is accessible to whatever

user (probably MySQL) the database processes run under.

MySQL will not add itself to the start menu, and there is no particularly nice GUI way to stop

the server either. Therefore, if you tend to start the server by double clicking the mysqld

executable, you should remember to halt the process by hand by using mysqladmin, Task List,

Task Manager, or other Windows-specific means.

Verifying MySQL Installation

After MySQL, has been successfully installed, the base tables have been initialized and the

server has been started: you can verify that everything is working as it should be via some

simple tests.

Use mysqladmin binary to check the server version. This binary would be available in /usr/bin

on linux and in C:\mysql\bin on windows.

[root@host]# mysqladmin --version

It will produce the following result on Linux. It may vary depending on your installation −

mysqladmin Ver 8.23 Distrib 5.0.9-0, for redhat-linux-gnu on i386

If you do not get such a message, then there may be some problem in your installation and you

would need some help to fix it.

You can connect to your MySQL server through the MySQL client and by using

the mysql command. At this moment, you do not need to give any password as by default it will

be set as blank.

You can just use following command −

[root@host]# mysql

It should be rewarded with a mysql> prompt. Now, you are connected to the MySQL server and

you can execute all the SQL commands at the mysql> prompt as follows −

mysql> SHOW DATABASES;

+----------+

| Database |

+----------+

| mysql |

| test |

+----------+

2 rows in set (0.13 sec)

Post-installation Steps

MySQL ships with a blank password for the root MySQL user. As soon as you have

successfully installed the database and the client, you need to set a root password as given in the

following code block −

[root@host]# mysqladmin -u root password "new_password";

Now to make a connection to your MySQL server, you would have to use the following

command −

[root@host]# mysql -u root -p

Enter password:*******

UNIX users will also want to put your MySQL directory in your PATH, so you won't have to

keep typing out the full path everytime you want to use the command-line client.

For bash, it would be something like −

export PATH = $PATH:/usr/bin:/usr/sbin

Running MySQL at Boot Time

If you want to run the MySQL server at boot time, then make sure you have the following entry

in the /etc/rc.local file.

/etc/init.d/mysqld start

Also,you should have the mysqld binary in the /etc/init.d/ directory.

Running and Shutting down MySQL Server

First check if your MySQL server is running or not. You can use the following command to

check it −

ps -ef | grep mysqld

If your MySql is running, then you will see mysqld process listed out in your result. If server is

not running, then you can start it by using the following command −

root@host# cd /usr/bin

./safe_mysqld &

Now, if you want to shut down an already running MySQL server, then you can do it by using

the following command −

root@host# cd /usr/bin

./mysqladmin -u root -p shutdown

Enter password: ******

Setting Up a MySQL User Account

For adding a new user to MySQL, you just need to add a new entry to the user table in the

database mysql.

The following program is an example of adding a new user guest with SELECT, INSERT and

UPDATE privileges with the password guest123; the SQL query is −

root@host# mysql -u root -p

Enter password:*******

mysql> use mysql;

Database changed

mysql> INSERT INTO user

 (host, user, password,

 select_priv, insert_priv, update_priv)

 VALUES ('localhost', 'guest',

 PASSWORD('guest123'), 'Y', 'Y', 'Y');

Query OK, 1 row affected (0.20 sec)

mysql> FLUSH PRIVILEGES;

Query OK, 1 row affected (0.01 sec)

mysql> SELECT host, user, password FROM user WHERE user = 'guest';

+-----------+---------+------------------+

| host | user | password |

+-----------+---------+------------------+

| localhost | guest | 6f8c114b58f2ce9e |

+-----------+---------+------------------+

1 row in set (0.00 sec)

When adding a new user, remember to encrypt the new password using PASSWORD() function

provided by MySQL. As you can see in the above example, the password mypass is encrypted

to 6f8c114b58f2ce9e.

Notice the FLUSH PRIVILEGES statement. This tells the server to reload the grant tables. If

you don't use it, then you won't be able to connect to MySQL using the new user account at

least until the server is rebooted.

You can also specify other privileges to a new user by setting the values of following columns

in user table to 'Y' when executing the INSERT query or you can update them later using

UPDATE query.

Another way of adding user account is by using GRANT SQL command. The following

example will add user zara with password zara123 for a particular database, which is named

as TUTORIALS.

root@host# mysql -u root -p password;

Enter password:*******

mysql> use mysql;

Database changed

mysql> GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP

 -> ON TUTORIALS.*

 -> TO 'zara'@'localhost'

 -> IDENTIFIED BY 'zara123';

This will also create an entry in the MySQL database table called as user.

NOTE − MySQL does not terminate a command until you give a semi colon (;) at the end of

the SQL command.

The /etc/my.cnf File Configuration

In most of the cases, you should not touch this file. By default, it will have the following entries

−

[mysqld]

datadir = /var/lib/mysql

socket = /var/lib/mysql/mysql.sock

[mysql.server]

user = mysql

basedir = /var/lib

[safe_mysqld]

err-log = /var/log/mysqld.log

pid-file = /var/run/mysqld/mysqld.pid

Here, you can specify a different directory for the error log, otherwise you should not change

any entry in this table.

Administrative MySQL Command

Here is the list of the important MySQL commands, which you will use time to time to work

with MySQL database −

USE Databasename − This will be used to select a database in the MySQL workarea.

SHOW DATABASES − Lists out the databases that are accessible by the MySQL DBMS.

SHOW TABLES − Shows the tables in the database once a database has been selected with the

use command.

SHOW COLUMNS FROM tablename: Shows the attributes, types of attributes, key

information, whether NULL is permitted, defaults, and other information for a table.

My SQL PHP Syntax

MySQL works very well in combination of various programming languages like PERL, C, C++,

JAVA and PHP. Out of these languages, PHP is the most popular one because of its web

application development capabilities.

.

PHP provides various functions to access the MySQL database and to manipulate the data

records inside the MySQL database. You would require to call the PHP functions in the same

way you call any other PHP function.

The PHP functions for use with MySQL have the following general format −

mysqli function(value,value,...);

The second part of the function name is specific to the function, usually a word that describes

what the function does. The following are two of the functions, which we will use in our tutorial

−$mysqli = new mysqli($dbhost, $dbuser, $dbpass, $dbname);

mysqli->query(,"SQL statement");

The following example shows a generic syntax of PHP to call any MySQL function.

<html>

<head>

 <title>PHP with MySQL</title>

 </head>

 <body>

 <?php

 $retval = mysqli - > function(value, [value,...]);

 if(!$retval) {

 die ("Error: a related error message");

 }

 // Otherwise MySQL or PHP Statemen?>

 </body>

</html>

Starting from the next chapter, we will see all the important MySQL functionality along

with PHP.

SHOW INDEX FROM tablename − Presents the details of all indexes on the table, including

the PRIMARY KEY.

SHOW TABLE STATUS LIKE tablename\G − Reports details of the MySQL DBMS

performance and statistics.

MySQL SELECT Statement

The SELECT statement in MySQL is used to fetch data from one or more tables. We can

retrieve records of all fields or specified fields that match specified criteria using this statement.

It can also work with various scripting languages such as PHP, Ruby, and many more.

SELECT Statement Syntax

It is the most commonly used SQL query. The general syntax of this statement to fetch data from

tables are as follows:

1. SELECT field_name1, field_name 2,... field_nameN

2. FROM table_name1, table_name2...

3. [WHERE condition]

4. [GROUP BY field_name(s)]

5. [HAVING condition]

6. [ORDER BY field_name(s)]

7. [OFFSET M][LIMIT N];

https://www.javatpoint.com/php-tutorial
https://www.javatpoint.com/ruby-tutorial
https://www.javatpoint.com/sql-tutorial

Syntax for all fields:

1. SELECT * FROM tables [WHERE conditions]

2. [GROUP BY fieldName(s)]

3. [HAVING condition]

4. [ORDER BY fieldName(s)]

5. [OFFSET M][LIMIT N];

Parameter Explanation

The SELECT statement uses the following parameters:

Parameter Name Descriptions

field_name(s) or * It is used to specify one or more columns to returns in the result

set. The asterisk (*) returns all fields of a table.

table_name(s) It is the name of tables from which we want to fetch data.

WHERE It is an optional clause. It specifies the condition that returned the

matched records in the result set.

GROUP BY It is optional. It collects data from multiple records and grouped

them by one or more columns.

HAVING It is optional. It works with the GROUP BY clause and returns

only those rows whose condition is TRUE.

ORDER BY It is optional. It is used for sorting the records in the result set.

OFFSET It is optional. It specifies to which row returns first. By default, It

starts with zero.

LIMIT It is optional. It is used to limit the number of returned records in

the result set.

MySQL SELECT Statement Example:

Let us understand how SELECT command works in MySQL with the help of various examples.

Suppose we have a table named employee_detail that contains the following data:

1. If we want to retrieve a single column from the table, we need to execute the below query:

1. mysql> SELECT Name FROM employee_detail;

We will get the below output where we can see only one column records.

2. If we want to query multiple columns from the table, we need to execute the below query:

1. mysql> SELECT Name, Email, City FROM employee_detail;

We will get the below output where we can see the name, email, and city of employees.

https://www.javatpoint.com/mysql-tutorial

3. If we want to fetch data from all columns of the table, we need to use all column's names

with the select statement. Specifying all column names is not convenient to the user, so MySQL

uses an asterisk (*) to retrieve all column data as follows:

1. mysql> SELECT * FROM employee_detail;

We will get the below output where we can see all columns of the table.

4. Here, we use the SUM function with the HAVING clause in the SELECT command to get

the employee name, city, and total working hours. Also, it uses the GROUP BY clause to group

them by the Name column.

1. SELECT Name, City, SUM(working_hours) AS "Total working hours"

2. FROM employee_detail

3. GROUP BY Name

4. HAVING SUM(working_hours) > 5;

It will give the below output:

https://www.javatpoint.com/mysql-having
https://www.javatpoint.com/mysql-group-by

5. MySQL SELECT statement can also be used to retrieve records from multiple tables by using

a JOIN statement. Suppose we have a table named "customer" and "orders" that contains the

following data:

Table: customer

Table: orders

Execute the following SQL statement that returns the matching records from both tables using

the INNER JOIN query:

1. SELECT cust_name, city, order_num, order_date

2. FROM customer INNER JOIN orders

3. ON customer.cust_id = orders.order_id

4. WHERE order_date < '2020-04-30'

5. ORDER BY cust_name;

Sorting Query Results

Use the ORDER BY clause to order the rows selected by a query. Sorting by position is useful in

the following cases:

 To order by a lengthy select list expression, you can specify its position in

the ORDER BY clause rather than duplicate the entire expression.

 For compound queries containing set operators UNION, INTERSECT, MINUS,

or UNION ALL, the ORDER BY clause must specify positions or aliases rather than

explicit expressions. Also, the ORDER BY clause can appear only in the last component

query. The ORDER BY clause orders all rows returned by the entire compound query.

https://www.javatpoint.com/mysql-inner-join

The mechanism by which Oracle Database sorts values for the ORDER BY clause is specified

either explicitly by the NLS_SORT initialization parameter or implicitly by

the NLS_LANGUAGE initialization parameter. You can change the sort mechanism

dynamically from one linguistic sort sequence to another using the ALTER SESSION statement.

You can also specify a specific sort sequence for a single query by using the NLSSORT function

with the NLS_SORT parameter in the ORDER BY clause.

Joins

A join is a query that combines rows from two or more tables, views, or materialized views.

Oracle Database performs a join whenever multiple tables appear in the FROM clause of the

query. The select list of the query can select any columns from any of these tables. If any two of

these tables have a column name in common, then you must qualify all references to these

columns throughout the query with table names to avoid ambiguity.

Join Conditions

Most join queries contain at least one join condition, either in the FROM clause or in

the WHERE clause. The join condition compares two columns, each from a different table. To

execute a join, Oracle Database combines pairs of rows, each containing one row from each

table, for which the join condition evaluates to TRUE. The columns in the join conditions need

not also appear in the select list.

To execute a join of three or more tables, Oracle first joins two of the tables based on the join

conditions comparing their columns and then joins the result to another table based on join

conditions containing columns of the joined tables and the new table. Oracle continues this

process until all tables are joined into the result. The optimizer determines the order in which

Oracle joins tables based on the join conditions, indexes on the tables, and, any available

statistics for the tables.

IA WHERE clause that contains a join condition can also contain other conditions that refer to

columns of only one table. These conditions can further restrict the rows returned by the join

query.

Equijoins

An equijoin is a join with a join condition containing an equality operator. An equijoin combines

rows that have equivalent values for the specified columns. Depending on the internal algorithm

the optimizer chooses to execute the join, the total size of the columns in the equijoin condition

in a single table may be limited to the size of a data block minus some overhead. The size of a

data block is specified by the initialization parameter DB_BLOCK_SIZE.

Self Joins

A self join is a join of a table to itself. This table appears twice in the FROM clause and is

followed by table aliases that qualify column names in the join condition. To perform a self join,

Oracle Database combines and returns rows of the table that satisfy the join condition.

Cartesian Products

If two tables in a join query have no join condition, then Oracle Database returns their Cartesian

product. Oracle combines each row of one table with each row of the other. A Cartesian product

always generates many rows and is rarely useful. For example, the Cartesian product of two

tables, each with 100 rows, has 10,000 rows. Always include a join condition unless you

specifically need a Cartesian product. If a query joins three or more tables and you do not specify

a join condition for a specific pair, then the optimizer may choose a join order that avoids

producing an intermediate Cartesian product.

Inner Joins

An inner join (sometimes called a simple join) is a join of two or more tables that returns only

those rows that satisfy the join condition.

Outer Joins

An outer join extends the result of a simple join. An outer join returns all rows that satisfy the

join condition and also returns some or all of those rows from one table for which no rows from

the other satisfy the join condition.

 To write a query that performs an outer join of tables A and B and returns all rows from

A (a left outer join), use the LEFT [OUTER] JOIN syntax in the FROM clause, or apply

the outer join operator (+) to all columns of B in the join condition in the WHERE clause.

For all rows in A that have no matching rows in B, Oracle Database returns null for any

select list expressions containing columns of B.

 To write a query that performs an outer join of tables A and B and returns all rows from

B (a right outer join), use the RIGHT [OUTER] JOIN syntax in the FROM clause, or

apply the outer join operator (+) to all columns of A in the join condition in

the WHERE clause. For all rows in B that have no matching rows in A, Oracle returns

null for any select list expressions containing columns of A.

 To write a query that performs an outer join and returns all rows from A and B, extended

with nulls if they do not satisfy the join condition (a full outer join), use

the FULL [OUTER] JOIN syntax in the FROM clause.

You can use outer joins to fill gaps in sparse data. Such a join is called a partitioned outer

join and is formed using the query_partition_clause of the join_clause syntax. Sparse data is

data that does not have rows for all possible values of a dimension such as time or department.

For example, tables of sales data typically do not have rows for products that had no sales on a

given date. Filling data gaps is useful in situations where data sparsity complicates analytic

computation or where some data might be missed if the sparse data is queried directly.

Oracle recommends that you use the FROM clause OUTER JOIN syntax rather than the Oracle

join operator. Outer join queries that use the Oracle join operator (+) are subject to the following

rules and restrictions, which do not apply to the FROM clause OUTER JOIN syntax:

 You cannot specify the (+) operator in a query block that also contains FROM clause join

syntax.

 The (+) operator can appear only in the WHERE clause or, in the context of left-

correlation (that is, when specifying the TABLE clause) in the FROM clause, and can be

applied only to a column of a table or view.

 If A and B are joined by multiple join conditions, then you must use the (+) operator in

all of these conditions. If you do not, then Oracle Database will return only the rows

resulting from a simple join, but without a warning or error to advise you that you do not

have the results of an outer join.

 The (+) operator does not produce an outer join if you specify one table in the outer query

and the other table in an inner query.

 You cannot use the (+) operator to outer-join a table to itself, although self joins are valid.

For example, the following statement is not valid:

 -- The following statement is not valid:

 SELECT employee_id, manager_id

 FROM employees

 WHERE employees.manager_id(+) = employees.employee_id;

However, the following self join is valid:

SELECT e1.employee_id, e1.manager_id, e2.employee_id

 FROM employees e1, employees e2

 WHERE e1.manager_id(+) = e2.employee_id;

 The (+) operator can be applied only to a column, not to an arbitrary expression.

However, an arbitrary expression can contain one or more columns marked with the (+)

operator.

 A WHERE condition containing the (+) operator cannot be combined with another

condition using the OR logical operator.

 A WHERE condition cannot use the IN comparison condition to compare a column

marked with the (+) operator with an expression.

 A WHERE condition cannot compare any column marked with the (+) operator with a

subquery.

If the WHERE clause contains a condition that compares a column from table B with a constant,

then the (+) operator must be applied to the column so that Oracle returns the rows from table A

for which it has generated nulls for this column. Otherwise Oracle returns only the results of a

simple join.

In a query that performs outer joins of more than two pairs of tables, a single table can be the

null-generated table for only one other table. For this reason, you cannot apply the (+) operator to

columns of B in the join condition for A and B and the join condition for B and C. Please refer

to SELECT for the syntax for an outer join.

Antijoins

An antijoin returns rows from the left side of the predicate for which there are no corresponding

rows on the right side of the predicate. That is, it returns rows that fail to match (NOT IN) the

subquery on the right side.

Semijoins

A semijoin returns rows that match an EXISTS subquery without duplicating rows from the left

side of the predicate when multiple rows on the right side satisfy the criteria of the subquery.

Semijoin and antijoin transformation cannot be done if the subquery is on an OR branch of

the WHERE clause.

Using Subqueries

A subquery answers multiple-part questions. For example, to determine who works in Taylor's

department, you can first use a subquery to determine the department in which Taylor works.

You can then answer the original question with the parent SELECT statement. A subquery in

the FROM clause of a SELECT statement is also called an inline view. A subquery in

the WHERE clause of a SELECT statement is also called a nested subquery.

A subquery can contain another subquery. Oracle Database imposes no limit on the number of

subquery levels in the FROM clause of the top-level query. You can nest up to 255 levels of

subqueries in the WHERE clause.

If columns in a subquery have the same name as columns in the containing statement, then you

must prefix any reference to the column of the table from the containing statement with the table

name or alias. To make your statements easier to read, always qualify the columns in a subquery

with the name or alias of the table, view, or materialized view.

Oracle performs a correlated subquery when a nested subquery references a column from a

table referred to a parent statement any number of levels above the subquery. The parent

statement can be a SELECT, UPDATE, or DELETE statement in which the subquery is nested.

A correlated subquery is evaluated once for each row processed by the parent statement. Oracle

https://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_10002.htm#i2065646

resolves unqualified columns in the subquery by looking in the tables named in the subquery and

then in the tables named in the parent statement.

A correlated subquery answers a multiple-part question whose answer depends on the value in

each row processed by the parent statement. For example, you can use a correlated subquery to

determine which employees earn more than the average salaries for their departments. In this

case, the correlated subquery specifically computes the average salary for each department.

Use subqueries for the following purposes:

 To define the set of rows to be inserted into the target table of

an INSERT or CREATE TABLE statement

 To define the set of rows to be included in a view or materialized view in

a CREATE VIEW or CREATE MATERIALIZED VIEW statement

 To define one or more values to be assigned to existing rows in an UPDATE statement

 To provide values for conditions in a WHERE clause, HAVING clause,

or START WITH clause of SELECT, UPDATE, and DELETE statements

 To define a table to be operated on by a containing query

You do this by placing the subquery in the FROM clause of the containing query as you

would a table name. You may use subqueries in place of tables in this way as well

in INSERT, UPDATE, and DELETE statements.

Subqueries so used can employ correlation variables, but only those defined within the

subquery itself, not outer references. Please refer to table_collection_expression for more

information.

Scalar subqueries, which return a single column value from a single row, are a valid form

of expression. You can use scalar subquery expressions in most of the places

where expr is called for in syntax. Please refer to "Scalar Subquery Expressions" for more

information.

https://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_10002.htm#i2104990
https://docs.oracle.com/cd/B19306_01/server.102/b14200/expressions010.htm#i1033549

